On Fibonacci Powers

نویسنده

  • Vladica Andrejić
چکیده

Fibonacci numbers have engaged the attention of mathematicians for several centuries, and whilst many of their properties are easy to establish by very simple methods, there are several unsolved problems connected to them. In this paper we review the history of the conjecture that the only perfect powers in Fibonacci sequence are 1, 8, and 144. Afterwards we consider more stronger conjecture and give the new characterization of closely related Wall-Sun-Sun primes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy of Graphs, Matroids and Fibonacci Numbers

The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.

متن کامل

Non-Abelian Sequenceable Groups Involving ?-Covers

A non-abelian finite group is called sequenceable if for some positive integer , is -generated ( ) and there exist integers such that every element of is a term of the -step generalized Fibonacci sequence , , , . A remarkable application of this definition may be find on the study of random covers in the cryptography. The 2-step generalized sequences for the dihedral groups studi...

متن کامل

Fibonacci Numbers at Most One Away from a Perfect Power

The famous problem of determining all perfect powers in the Fibonacci sequence and the Lucas sequence has recently been resolved by three of the present authors. We sketch the proof of this result, and we apply it to show that the only Fibonacci numbers Fn such that Fn ± 1 is a perfect power are 0, 1, 2, 3, 5 and 8. The proof of the Fibonacci Perfect Powers Theorem involves very deep mathematic...

متن کامل

Small Prime Powers in the Fibonacci Sequence

It is shown that there are no non-trivial fifth-, seventh-, eleventh-, thirteenthor seventeenth powers in the Fibonacci sequence. For eleventh, thirteenthand seventeenth powers an alternative (to the usual exhaustive check of products of powers of fundamental units) method is used to overcome the problem of having a large number of independent units and relatively high bounds on their exponents...

متن کامل

Generalized Fibonacci and Lucas cubes arising from powers of paths and cycles

The paper deals with some generalizations of Fibonacci and Lucas sequences, arising from powers of paths and cycles, respectively. In the first part of the work we provide a formula for the number of edges of the Hasse diagram of the independent sets of the h power of a path ordered by inclusion. For h = 1 such a diagram is called a Fibonacci cube, and for h > 1 we obtain a generalization of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014